Abstract

Low-power wide-area (LPWA) is a communication technology for the IoT that allows low power consumption and long-range communication. Additionally, packet-level index modulation (PLIM) can transmit additional information using multiple frequency channels and time slots. However, in a competitive radio access environment, where multiple sensors autonomously determine packet transmission, packet collisions occur when transmitting the same information. The packet collisions cause a reduction in the throughput. A method has been proposed to design a mapping table that shows the correspondence between indexes and information using a packet collision minimization criterion. However, the effectiveness of this method depends on how the probability of the occurrence of the information to be transmitted is modeled. We propose an environment-aware adaptive data-gathering method that identifies the location of factors affecting sensor information and constructs a model for the probability of the occurrence of sensor information. The packet collision rate of the environment-aware adaptive data-gathering method was clarified through computer simulations and actual experiments on a 429 MHz LPWA. We confirm that the proposed scheme improves the packet collision rate by 15% in the computer simulation and 30% in the experimental evaluation, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.