Abstract
Various studies have characterized head kinematics in specific everyday activities by looking at linear and/or rotational acceleration characteristics, but each has evaluated a limited number of activities. Furthermore, these studies often present dissimilar and sometimes incomplete descriptions of the resulting kinematics, so the characteristics of normal everyday activities as a whole are not easily collectively summarized. The purpose of this study was to evaluate the literature investigating head kinematics associated with everyday activities and to generate a comprehensive kinematic boundary envelope describing these motions. The envelope constructed constitutes the current state of published knowledge regarding 'normally occurring' head accelerations. The envelope of kinematics represents activities commonly encountered and posing zero to minimal risk of injury to healthy individuals. Several kinematic measures, including linear accelerations, rotational velocities, and rotational accelerations, one may encounter as a result of normal everyday activities are summarized. A total of 11 studies encompassing 49 unique activities were evaluated. Examples of activities include sitting in a chair, jumping off a step, running, and walking. The peak resultant linear accelerations of the head reported in the literature were all less than 15g, while the peak resultant rotational accelerations and rotational velocities approach 1375rad/s2 and 12.8rad/s, respectively. The resulting design envelope can be used to understand the range of acceleration magnitudes a typical active person can expect to experience. The results are also useful to compare to other activities exposing the head to motion or impact including sports, military, automotive, aerospace and other sub-injurious and injurious events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.