Abstract

In today’s uncertain and competitive market, where manufacturing enterprises are subjected to increasingly shortened product lifecycles and frequent volume changes, reconfigurable manufacturing system (RMS) applications play significant roles in the success of the manufacturing industry. Despite the advantages offered by RMSs, achieving high efficiency constitutes a challenging task for stakeholders and decision makers when they face the trade-off decisions inherent in these complex systems. This study addresses work task and resource allocations to workstations together with buffer capacity allocation in an RMS. The aim is to simultaneously maximize throughput and to minimize total buffer capacity under fluctuating production volumes and capacity changes while considering the stochastic behavior of the system. An enhanced simulation-based multi-objective optimization (SMO) approach with customized simulation and optimization components is proposed to address the abovementioned challenges. Apart from presenting the optimal solutions subject to volume and capacity changes, the proposed approach supports decision makers with knowledge discovery to further understand RMS design. In particular, this study presents a customized SMO approach combined with a novel flexible pattern mining method for optimizing an RMS and conducts post-optimal analyses. To this extent, this study demonstrates the benefits of applying SMO and knowledge discovery methods for fast decision support and production planning of an RMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.