Abstract
In this paper, two novel approaches are proposed to improve the performance of online least squares support vector machine for classification problem. First, the parameters of support vector classifier model including kernel width parameter are simultaneously updated when a new sample arrives. In that model, kernel width parameter is a nonlinear term which cannot be estimated via least squares solution. Therefore, unscented Kalman filter is adopted to train all the parameters where Karush–Kuhn–Tucker conditions are satisfied. Second, a variable-size moving window, which is updated by an intelligent strategy, is proposed to construct the support vector set. Thus, the proposed model captures the dynamics of data quickly while precluding itself to become clumsy due to big amount of useless data. In addition, adaptive support vector set provides a lower computational load especially for the large data sets. Simultaneous training of the model parameters by unscented Kalman filter and intelligent update of support vector set provides a superior classification performance compared to the online support vector classification approaches in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.