Abstract

Due to nonstationary operating conditions of wind turbines and surrounding harsh working environments, the impulse features induced by bearing faults are always overwhelmed by heavy noise, which brings challenges to accurately detect rolling bearing faults. Sparse representation exhibits excellent performance in nonstationary signal analysis, but it is closely bound up with the degree of similarity between the atoms in a dictionary and signals. Therefore, this paper investigates an enhanced K-SVD denoising method based on adaptive soft-threshold shrinkage to achieve high-precision extraction of impulse signals, and applies it to fault detection of generator bearing of wind turbines. An adaptive sparse coding shrinkage soft-threshold denoising is first proposed to remove noise and harmonic interference in the residual term of dictionary updating, so that the updated atoms show obvious impact characteristics. Furthermore, a soft-threshold shrinkage function with adaptive threshold is designed to further suppress clutter in atoms of the learned dictionary, so as to obtain an optimized dictionary for recovering impulse signals. Two actual engineering cases are selected for analysis, and the envelope spectrum correlation kurtosis corresponding to the results obtained by the proposed method is significantly higher than that of other comparison methods, thus verifying its superiority in detecting rolling bearing faults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.