Abstract

Tyrosyl-tRNA synthetase (TyrRS) from Escherichia coli was engineered to preferentially recognize 3-iodo-L-tyrosine rather than L-tyrosine for the site-specific incorporation of 3-iodo-L-tyrosine into proteins in eukaryotic translation systems. The wild-type TyrRS does not recognize 3-iodo-L-tyrosine, because of the bulky iodine substitution. On the basis of the reported crystal structure of Bacillus stearothermophilus TyrRS, three residues, Y37, Q179, and Q195, in the L-tyrosine-binding site were chosen for mutagenesis. Thirty-four single amino acid replacements and 16 of their combinations were screened by in vitro biochemical assays. A combination of the Y37V and Q195C mutations changed the amino acid specificity in such a way that the variant TyrRS activates 3-iodo-L-tyrosine 10-fold more efficiently than L-tyrosine. This engineered enzyme, TyrRS(V37C195), was tested for use in the wheat germ cell-free translation system, which has recently been significantly improved, and is now as productive as conventional recombinant systems. During the translation in the wheat germ system, an E. coli suppressor tRNA(Tyr) was not aminoacylated by the wheat germ enzymes, but was aminoacylated by the E. coli TyrRS(V37C195) variant with 3-iodo-l-tyrosine. After the use of the 3-iodotyrosyl-tRNA in translation, the resultant uncharged tRNA could be aminoacylated again in the system. A mass spectrometric analysis of the produced protein revealed that more than 95% of the amino acids incorporated for an amber codon were iodotyrosine, whose concentration was only twice that of L-tyrosine in the translation. Therefore, the variant enzyme, 3-iodo-L-tyrosine, and the suppressor tRNA can serve as an additional set orthogonal to the 20 endogenous sets in eukaryotic in vitro translation systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.