Abstract

This study considers single machine scheduling with the machine operating at varying speed levels for different jobs with release dates and sequence-dependent setup times, in order to examine the trade-off between makespan and total energy consumption. A bi-objective mixed integer linear programming model is developed employing this speed scaling scheme. The augmented e-constraint method with a time limit is used to obtain a set of non-dominated solutions for each instance of the problem. An energy-efficient multi-objective variable block insertion heuristic is also proposed. The computational results on a benchmark suite consisting of 260 instances with 25 jobs from the literature reveal that the proposed algorithm is very competitive in terms of providing tight Pareto front approximations for the problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.