Abstract

A formulation for computing resonant nonlinear normal modes (NNMs) is developed for discrete and continuous systems. In a canonical framework, internal resonance conditions are immediately recognized by identifying commensurable linearized natural frequencies of these systems. Additionally, a canonical formulation allows for a single (linearized modal) coordinate to parameterize all other coordinates during a resonant NNM response. Energy-based NNM methodologies are applied to a canonical set of equations and asymptotic solutions are sought. In order to account for the resonant modal interactions, it will be shown that high-order terms in the O(1) solutions must be considered (in the absence of internal resonances, a linear expansion at O(1) is sufficient). Two applications (‘3:1’ resonances in a two-degree-of-freedom system and ‘3:1’ resonance in a hinged-clamped beam) are then considered by which to demonstrate the resonant NNM methodology. It is shown that for some responses, nonlinear modal relations do not exist in the context of physical coordinates and thus a transformation to a canonical framework is necessary in order to appropriately define NNM relations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.