Abstract

In this paper, a comprehensive centralized structure is proposed for Microgrids (MGs) operation incorporating active and reactive power resources. In this approach, the Distributed Generation (DGs), Energy Storage Systems (ESSs), Demand Response (DR) program, load shifting scheme, switchable capacitor banks and Plug-in Hybrid Electric Vehicles (PHEV) are considered simultaneously. The operation modes of PHEVs is modeled to schedule their charging/discharging and calculate the pollution produced in fossil fuel mode. Fifteen types of costs are integrated into the objective function, and several operational constraints are considered. They include power generation costs from the main grid and DG units, the cost of pollution emitted by DG units and PHEVs, and the degradation of plug-in hybrid electric vehicles batteries. The proposed method is programmed using GAMS software as a Mixed-Integer Second-Order Cone Programming (MISOCP) problem, and it is implemented on a test MG. simultaneous management of active and reactive power sources can result in less cost compared to the separated scheduling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.