Abstract

With the shorter time-to-market and the rising cost in SoC development, the demand for post-silicon programmability has been increasing. Recently, programmable accelerators have attracted more attention as an enabling solution for post-silicon engineering change. However, programmable accelerators suffers from 5∼10X less energy efficiency than fixed-function accelerators mainly due to their extensive use of memories. This paper proposes a highly energy-efficient accelerator which enables post-silicon engineering change by a control patching mechanism. Then, we propose a patch compilation method from a given pair of an original design and a modified design. We also propose a design method to add redundant wires in advance to decrease the necessary amount of patch memory for post-silicon engineering change. Experimental results demonstrate that the proposed accelerators offer high energy efficiency competitive to fixed-function accelerators and can achieve about 5X higher efficiency than the existing programmable accelerators. We also show the trade-off between redundant wires and the necessary amount of patch memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.