Abstract

BACKGROUND: The antispin regulation (ASR) operation, combined with an individual electric traction drive (IETD) of a city electrobus, may contribute to road safety improvement as well as to economy of electric energy, consumed by IETD from drive battery as a result of decreasing of drving wheels spin.
 AIMS: Development of a new operation algorithm of the electrodynamic ASR of the rear axle driven electrobus, based on additional modulation of the vectoral PWM signal, applied to three-phase windings of a stator of a synchronous traction motor and helping to ensure electroenergy economy as a result of consumption decrease and partial energy return during driving wheels regenerative braking,as well as improvement of driving stability on slippery roads.
 METHODS: The chosen criterion of operating capability of the ASR operation algorithm is absence of negative impact on road safety, which may consist in loss of course and trajectory driving stability and loss of mobility. Electrobus motion path was used as an integrational measuring tool for quality assessment of these performance characteristics. The chosen criteria of energy efficiency are the summarized averaged electric power, consumed by traction motors, and the summarized averaged electrical power of regeneration, returned by traction motors to the battery throughout the electrobus testing ride.
 RESULTS: With simulation methods, it was found that the summarized averaged power of the electrobus, featured with the ASR, driving on slippery road, is 9.7% less than the power of the electrobus without the ASR in the same conditions.
 CONCLUSIONS: The summarized economy, resulted from decreasing of energy consumption (driving wheels spin is eliminated) and partial energy return back to a battery during driving wheels regenerative braking, may be up to 26.8% of the summarized averaged electric power, consumed by traction motors of the electrobus with the ASR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.