Abstract
A new quasi-static and energy based formulation of an interface damage model which provides interface traction-relative displacement laws like in traditional trilinear (with bilinear softening) or generally multilinear cohesive zone models frequently used by engineers is presented. This cohesive type response of the interface may represent the behaviour of a thin adhesive layer. The level of interface adhesion or damage is defined by several scalar variables suitably defined to obtain the required traction-relative displacement laws. The weak solution of the problem is sought numerically by a semi-implicit time-stepping procedure which uses recursive double minimization in displacements and damage variables separately. The symmetric Galerkin boundary-element method is applied for the spatial discretization. Sequential quadratic programming is implemented to resolve each partial minimization in the recursive scheme applied to compute the time-space discretized solutions. Sample 2D numerical examples demonstrate applicability of the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.