Abstract
The existence of specific binding sites for a β-glucan elicitor of phytoalexin synthesis derived from the fungus Phytophthora megasperma f.sp. glycinea at the plasma membrane of soybean (Glycine max L.) tissues (W.E. Schmidt, J. Ebel (1987) Proc. Natl. Acad. Sci. USA 84, 4117-4121) might imply that stimulation of phytoalexin formation by the elicitor is a membrane-mediated process. Addition of the β-glucan elicitor to soybean cellsuspension cultures, which has previously been shown to induce phytoalexin accumulation, also results in rapid changes in the phosphate turnover of several phosphoproteins. The effect of the elicitor on protein phosphorylation was tested after labeling of the cells with [(32)P]orthophosphate. As shown by analysis using one-and two-dimensional gel electrophoresis, decreases as well as increases in the labeling of several phosphoroteins occurred rapidly, being detectable within 5 min after elicitor application, and persisted for at least 15 min. As judged by their relative molecular masses (Mr) and isoelectric points (pI), a number of proteins which were radioactively labeled in vivo were also phosphorylated in vitro by endogenous protein-kinase activity in the presence of Ca(2+). The most pronounced effect was observed with a protein substrate with Mr=69000 and pI=5.7 (pp69) whose phosphate labeling markedly decreased in response to elicitor treatment in vivo. Phosphorylation of pp69 in vitro in the presence of γ-[(32)P]ATP was strongly enhanced by a phosphorylation-stimulating factor (effector) derived from soybean cell cultures and occurred predominantly at serine residues. The effector possessed a low apparent Mr (≤1000), was negatively charged at pH 7.3, and was relatively heat stable. The effector was inactivated by treatment with alkaline phosphatase from calf intestine. Phosphorylation of pp69 was only slightly stimulated by Ca(2+), and was insensitive to cAMP, cGMP, calmodulin, a lipid mixture, a ganglioside mixture, or spermine under the assay conditions used. A 10 mM concentration of 3-phosphoglycerate increased pp69 phosphorylation to the extent of about 50% of that induced by the soybean effector. There was no evidence, however, that such concentrations of 3-phosphoglycerate occurred in effector preparations. The results are discussed in relation to hypothetical signal transduction during elicitor action on soybean cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.