Abstract

Various mature automated test generation tools exist for statically typed programming languages such as Java. Automatically generating unit tests for dynamically typed programming languages such as Python, however, is substantially more difficult due to the dynamic nature of these languages as well as the lack of type information. Our Pynguin framework provides automated unit test generation for Python. In this paper, we extend our previous work on Pynguin to support more aspects of the Python language, and by studying a larger variety of well-established state of the art test-generation algorithms, namely DynaMOSA, MIO, and MOSA. Furthermore, we improved our Pynguin tool to generate regression assertions, whose quality we also evaluate. Our experiments confirm that evolutionary algorithms can outperform random test generation also in the context of Python, and similar to the Java world, DynaMOSA yields the highest coverage results. However, our results also demonstrate that there are still fundamental remaining issues, such as inferring type information for code without this information, currently limiting the effectiveness of test generation for Python.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.