Abstract
In this paper, we study the problem of transforming to normality. We propose to estimate the transformation parameter by minimizing a weighted squared distance between the empirical characteristic function of transformed data and the characteristic function of the normal distribution. Our approach also allows for other symmetric target characteristic functions. Asymptotics are established for a random sample selected from an unknown distribution. The proofs show that the weight function <TEX>$t^{-2}$</TEX> needs to be modified to have thinner tails. We also propose the method to compute the influence function for M-equation taking the form of U-statistics. The influence function calculations and a small Monte Carlo simulation show that our estimates are less sensitive to a few outliers than the maximum likelihood estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications for Statistical Applications and Methods
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.