Abstract

Spinal cord and other local injuries often lead to partial paralysis while the brain stays fully functional. When this partial paralysis occurs in the hand, these individuals are not able to execute daily activities on their own even if their arms are functional. To remedy this problem, a lightweight, low-profile orthotic exoskeleton has been designed to restore dexterity to paralyzed hands. The exoskeleton’s movements are controlled by the user’s available electromyography (EMG) signals. The device has two actuators controlling the index finger flexion that can be used to perform a pinching motion against a fixed thumb. Using this orthotic device, a new control technique was developed to allow for a natural reaching and pinching sequence by utilizing the natural residual muscle activation patterns. To design this controller, two actuator control algorithms were explored with a quadriplegic (C5/C6) subject and it was determined that a simple binary control algorithm allowed for faster interaction with objects over a variable control algorithm. The binary algorithm was then used as an enabling algorithm to activate the exoskeleton movements when the natural sequence of muscle activities found a pattern related to a pinch. This natural pinching technique has shown significant promise toward realistic neural control of wearable robotic devices to assist paralyzed individuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.