Abstract

Internet of things (IoT) devices are mostly ubiquitous in this day and age, and it is hard to imagine a life without them, especially in the productive sectors (industry, agriculture, and automotive) and in our daily life activities (consumer electronics, home automation, and intelligent buildings). The high demand for these devices has created significant competition to provide them at the best price, at the right time, and with the best features. The trend in which these devices have increased their product features has resulted in their embedded software being more complex, leading to extended development and testing times. Consequently, as the types of advanced IoT products keep diversifying, the field maintenance of all the different models deployed grows more complicated. This paper proposes an embedded software development framework for IoT devices independent of the microcontroller architecture, the compiler, and the development environment. This framework allows having a common software baseline between different projects, which shortens the learning curve, development time, and module validation while allowing code reuse for embedded software professionals. A proof-of-concept evaluation is also presented to demonstrate the efficiency and reliability of the obtained embedded software code for a simple but representative IoT application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.