Abstract
A gauge origin independent formalism for the calculation of molecular magnetic properties is presented. Origin independence is obtained by using London’s gauge invariant atomic orbitals, expanding the second quantization Hamiltonian in the external magnetic field and nuclear magnetic moments, and using the resulting expansion terms as perturbation operators in response function calculations. To ensure orthonormality of the molecular orbitals, a field-dependent symmetrical orthonormalization is employed. In this way the gauge dependence of the London orbitals is transferred to the Hamiltonian. The resulting perturbation operators may be used to calculate magnetic properties from any approximate ab initio wave function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.