Abstract
We present an electrically-controllable multi-spectral quantum dot infrared photodetector (QDIP). The QDIP consists of vertically-stacked InAs quantum dots layers with two different capping layers for MWIR and LWIR absorption, respectively. The multi-spectral QDOP is capable of simultaneously detecting multi-spectral normal incidence through inter-subband transitions in the three-dimensional (3-D) confined quantum dot nanostructures. The QDIP showed multi-color IR detection bands centered at 5.6μm, 7.7 μm and 10.0μm, respectively. By tuning the bias voltage, the detection band can be individual turned on. High photodetectivity of > 2.3×1010cmHz1/2/W were obtained for these IR detection bands. The voltage-controllable detection band selection enables real-time system reconfiguration to focus on the band of interest. The vertically-stacked device structure allows easy construction of focal plane arrays (FPA).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.