Abstract

Due to the frequent spill accidents during crude oil exploration and transport, to rapidly cleanup crude oil and eliminate the environmental pollution of oil spill is in high demand. In this work, a three-dimensional graphene aerogel (MEGA) with high elasticity, photothermal conversion capacity and adsorption capacity was prepared for rapid removal of crude oil. The results showed that the as-prepared MEGA exhibited a layered structure, the octahedral HKUST-1 nanoparticles and hydrophobic polydimethylsiloxane (PDMS) coatings were uniformly deposited on the surface. Such a hierarchical micro-nano porous structure not only improved the aerogel's hydrophobicity (water contact angle in air up to 152.7°), but also endowed it with strong oil adsorption capacity (41-118 times of its own weight). Especially, the MEGA showed excellent photothermal conversion capacity. Under light irradiation, its temperature raised to 80℃ from room temperature in 100s. As a result, the adsorption for one drop of crude oil by MEGA was shortened from 5h to 40s, comparing with that in dark condition. In addition, the MEGA showed remarkable elasticity and mechanical stability, it could maintain more than 90% efficiency after 10 adsorption-compression cycles. This study suggests that the prepared MEGA has great potential for rapid removal of crude oil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.