Abstract

In multi-agent system (MAS) applications, teamwork among the agents is essential as the agents are required to collaborate and pool resources to execute the given tasks and complete the objectives successfully. A vital part of the collaboration is sharing of information and resources in order to optimize their efforts in achieving the given objectives. Under such collaborative environment, trust among the agents plays a critical role to ensure efficient cooperation. This study looks into developing a trust evaluation model that can empirically evaluate the trust of one agent on the other. The proposed model is developed using temporal difference learning method, incorporating experience gained through interactions into trust evaluation. Simulation experiments are conducted to evaluate the performance of the developed model against some of the most recent models reported in the literature. The results of the simulation experiments indicate that the proposed model performs better than the comparison models in estimating trust more effectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.