Abstract

An efficient algorithm without flux correction for simulation of corona discharges is proposed. The algorithm referred to as the position-state separation method (POSS) is used to solve convection-dominated continuity equations commonly present in corona discharges modelling. The proposed solution method combines an Eulerian scheme for the solution of the convective acceleration, the diffusion and the reaction subproblems, and a Lagrangian scheme for the solution of the linear convection subproblem. Several classical numerical experiments in different dimensions and coordinate systems are conducted to demonstrate the excellent performance of POSS regarding low computational cost, robustness, and high-resolution. It is shown that the time complexity of the method when dealing with the convection of charged particles increases linearly with the number of unknowns. For the simulation of corona discharges where local electric fields do not change strongly in time, the time step of POSS could be much larger than the CFL time step. These special features enable POSS to have great potential in modeling of corona discharges in long interelectrode gaps and for long simulation times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.