Abstract
Usually, efficient self-timed adders are realized using the dynamic differential cascode voltage switch logic. This allows the end-completion to be easily detected, but it makes circuit design and testing very complex, compelling the production of full-custom layouts and leading to a very long time before marketing. This paper presents a new 56-bit high-speed self-timed adder realized with conventional AMS 0.35 μm CMOS standard cells. The proposed circuit uses overlapped execution circuits, which exploit the initialization time that always elapses between two consecutive addition operations. Compared to several self-timed adders existing in the literature, the addition circuit proposed here shows brilliant advantages in terms of speed-performance, silicon area occupancy and power dissipation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.