Abstract
Studying the propagation of uncertainties in a nonlinear dynamical system usually involves generating a set of samples in the stochastic parameter space and then repeated simulations with different sampled parameters. The main difficulty faced in the process is the excessive computational cost. In this paper, we present an efficient, partitioned ensemble algorithm to determine multiple realizations of a reduced Magnetohydrodynamics (MHD) system, which models MHD flows at low magnetic Reynolds number. The algorithm decouples the fully coupled problem into two smaller subphysics problems, which reduces the size of the linear systems that to be solved and allows the use of optimized codes for each subphysics problem. Moreover, the resulting coefficient matrices are the same for all realizations at each time step, which allows faster computation of all realizations and significant savings in computational cost. We prove this algorithm is first order accurate and long time stable under a time step condition. Numerical examples are provided to verify the theoretical results and demonstrate the efficiency of the algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.