Abstract

ABSTRACTAn efficient algorithm for computing the terms appearing in the Generalised Kolmogorov Equation (GKE) written for the indefinite plane channel flow is presented. The algorithm, which features three distinct strategies for parallel computing, is designed such that CPU and memory requirements are kept to a minimum, so that high-Re wall-bounded flows can be afforded. Computational efficiency is mainly achieved by leveraging the Parseval's theorem for the two homogeneous directions available in the plane channel geometry. A speedup of 3-4 orders of magnitude, depending on the problem size, is reported in comparison to a key implementation used in the literature. Validation of the code is demonstrated by computing the residual of the GKE, and example results are presented for channel flows at and , where for the first time they are observed in the whole four-dimensional domain. It is shown that the space and scale properties of the scale-energy fluxes change for increasing values of the Reynolds number. Among all scale-energy fluxes, the wall-normal flux is found to show the richest behaviour for increasing streamwise scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.