Abstract

AbstractWe present a planar three‐dimensional (3D) fracture growth simulator, based on a displacement discontinuity (DD) method for multi‐layer elasticity problems. The method uses a fixed mesh approach, with rectangular panel elements to represent the planar fracture surface. Special fracture tip logic is included that allows a tip element to be partially fractured in the tip region. The fracture perimeter is modelled in a piece‐wise linear manner. The algorithm can model any number of interacting fractures that are restricted to lie on a single planar surface, located orthogonal to any number of parallel layers. The multiple layers are treated using a Fourier transform (FT) approach that provides a numerical Green's function for the DD scheme. The layers are assumed to be fully bonded together. Any fracture growth rule can be postulated for the algorithm. We demonstrate this approach on a number of test problems to verify its accuracy and efficiency, before showing some more general results. Copyright © 2001 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.