Abstract

Bombyx mori Nucleopolyhedrovirus (BmNPV), which is a member of the Baculoviridae family, is a significant pathogen of the silkworm. The infection of BmNPV is often lethal and causes about 20% loss of cocoon in the silk industry annually. To explore the effects of different gene inhibition strategies on the replication cycle of baculovirus, we constructed the mutant virus to infect BmN cells directly and further identified ie0, ie1, and gp64 as the essential viral genes of BmNPV. To elucidate the significance of the inhibition effect of different interference strategies, we characterized and constructed the recombinant BmNPV that carried a single or multigene-interfering cassette. The results showed that the inhibition effect of dsie1 on target gene expression, virus titer, and silkworm mortality was significantly better than that of dsie0 and dsgp64. It also showed that the dsie1 interference produced fewer progeny virions and was less lethal, which indicates that ie1 played a more critical role in the BmNPV replication cycle. Furthermore, the inhibitory effect of the virus titer and mortality indicated that the multigene co-interference constructed by the baculovirus expression system was significantly better than the interference of any single-gene (p < 0.05). In summary, the strategy of multigene synergy can achieve the function of continuous interference and provide a new platform for the breeding of silkworm disease resistant. In addition, this strategy improves the various traits of the silkworm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.