Abstract

Modelling of material appearance from reflectance measurements has become increasingly prevalent due to the development of novel methodologies in Computer Graphics. In the last few years, some advances have been made in measuring the light-material interactions, by employing goniometers/reflectometers under specific laboratory’s constraints. A wide range of applications benefit from data-driven appearance modelling techniques and material databases to create photorealistic scenarios and physically based simulations. However, important limitations arise from the current material scanning process, mostly related to the high diversity of existing materials in the real-world, the tedious process for material scanning and the spectral characterisation behaviour. Consequently, new approaches are required both for the automatic material acquisition process and for the generation of measured material databases. In this study, a novel approach for material appearance acquisition using hyperspectral data is proposed. A dense 3D point cloud filled with spectral data was generated from the images obtained by an unmanned aerial vehicle (UAV) equipped with an RGB camera and a hyperspectral sensor. The observed hyperspectral signatures were used to recognise natural and artificial materials in the 3D point cloud according to spectral similarity. Then, a parametrisation of Bidirectional Reflectance Distribution Function (BRDF) was carried out by sampling the BRDF space for each material. Consequently, each material is characterised by multiple samples with different incoming and outgoing angles. Finally, an analysis of BRDF sample completeness is performed considering four sunlight positions and 16x16 resolution for each material. The results demonstrated the capability of the used technology and the effectiveness of our method to be used in applications such as spectral rendering and real-word material acquisition and classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.