Abstract

We have developed an efficient iterative algorithm for electromagnetic scattering of arbitrary but relatively smooth dielectric objects. The algorithm iteratively adapts the equivalent surface currents until the electromagnetic fields inside and outside the dielectric objects match the boundary conditions. Theoretical convergence is analyzed for two examples that solve scattering of plane waves incident upon air/dielectric slabs of semi-infinite and finite thicknesses. We applied the iterative algorithm for simulation of sinusoidally-perturbed dielectric slab on one side and the method converged for such unsmooth surfaces. We next simulated the shift in radiation pattern of a 6-inch dielectric lens for different offsets of the feed antenna on the focal plane. The result is compared to that of the Geometrical Optics (GO).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.