Abstract

An efficient method to capture an arbitrary number of fluid/structure interfaces in a level-set framework is built, following ideas introduced for contour capturing in image analysis. Using only three label maps and two distance functions we succeed in locating and evolving the bodies independently in the whole domain and get the distance between the closest bodies in order to apply a collision force whatever the number of cells is. The method is applied to rigid solid bodies in order to compare to the results available in the literature. In that case, a global penalization model uses the label maps to follow the solid bodies all together without a separate computation of each body velocity. Numerical simulations are performed in two- and three-dimensions. An application to immersed vesicles is also proposed and shows the capability and efficiency of the method to handle numerical contacts between elastic bodies at low resolution. Two-dimensional simulations of vesicles under various flow conditions are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.