Abstract
Efficient sensitivity analysis, particularly for the global sensitivity analysis (GSA) to identify the most important or sensitive parameters, is crucial for understanding complex hydrological models, e.g., distributed hydrological models. In this paper, we propose an efficient integrated approach that integrates a qualitative screening method (the Morris method) with a quantitative analysis method based on the statistical emulator (variance-based method with the response surface method, named the RSMSobol' method) to reduce the computational burden of GSA for time-consuming models. Using the Huaihe River Basin of China as a case study, the proposed approach is used to analyze the parameter sensitivity of distributed time-variant gain model (DTVGM). First, the Morris screening method is used to qualitatively identify the parameter sensitivity. Subsequently, the statistical emulator using the multivariate adaptive regression spline (MARS) method is chosen as an appropriate surrogate model to quantify the sensitivity indices of the DTVGM. The results reveal that the soil moisture parameter WM is the most sensitive of all the responses of interest. The parameters Kaw and g1 are relatively important for the water balance coefficient (WB) and Nash–Sutcliffe coefficient (NS), while the routing parameter RoughRss is very sensitive for the Nash–Sutcliffe coefficient (NS) and correlation coefficient (RC) response of interest. The results also demonstrate that the proposed approach is much faster than the brute-force approach and is an effective and efficient method due to its low CPU cost and adequate degree of accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.