Abstract

This work of applied mathematics with interfaces in bio-physics focuses on the shape identification and numerical modelisation of a single red blood cell shape. The purpose of this work is to provide a quantitative method for interpreting experimental observations of the red blood cell shape under microscopy. In this paper we give a new formulation based on classical theory of geometric shape minimization which assumes that the curvature energy with additional constraints controls the shape of the red blood cell. To minimize this energy under volume and area constraints, we propose a new hybrid algorithm which combines Particle Swarm Optimization (PSO), Gravitational Search (GSA) and Neural Network Algorithm (NNA). The results obtained using this new algorithm agree well with the experimental results given by Evans et al. (8) especially for sphered and biconcave shapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.