Abstract

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with unclear pathogenesis, for which diagnosis has been a great challenge. Recent researches have revealed that miR-3675-3p is a promising biomarker for IPF diagnosis. Herein, the present work describes a novel electrochemical microRNA biosensor for rapid and sensitive detection of miR-3675-3p based on multiple signal amplification strategies. First of all, fullerene (C60) is doped with poly(amidoamine) (PAMAM)-functionalized metal-organic framework (MOF) to form a new nanohybrid of C60@PAMAM-MOF, which exhibits more remarkable redox activity compared with the other two synthesized C60-based nanohybrids when triggered by tetraoctylammonium bromide (TOAB). C60@PAMAM-MOF also possesses a large specific surface area and abundant amino groups to anchor Au nanoparticles (AuNPs) for the immobilization of signal probe (SP) to form tracer label and enhance the electrochemical response signal. In addition, core@shell Au–Pt nanoparticles (Au@PtNPs) are absorbed on chitosan-acetylene black (CS-AB) to act as sensing platform, which can promote electron transfer and increase the loading of capture probe (CP). Under optimum conditions, the proposed biosensor displays a wide linear range for miR-3675-3p from 10 fM to 10 nM, with a limit of detection (LOD) as low as 2.99 fM. More significantly, this biosensor shows a lower LOD and wider linear range than that of qRT-PCR, and its trial application in human serum shows favorable results, which exhibits a promising prospect for IPF diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.