Abstract
As for massive multidimensional data are being generated in a wide range of emerging applications, this paper introduces two new methods of dimension reduction to conduct small-sample size and high-dimensional data processing and modeling. Through combining the support vector machine (SVM) and recursive feature elimination (RFE), SVM-RFE algorithm is proposed to select features, and further, adding the higher order singular value decomposition (HOSVD) to the feature extraction which involves successfully organizing the data into high order tensor pattern. The validation of simulation experiment data shows that the proposed novel feature selection and feature extraction methods can be effectively applied to the research work for analyzing and modeling the data of atmospheric corrosion. The feature selection method pledges that the remaining feature subset is optimal; feature extraction method reserves the original structure, discriminate information, and the integrity of data, etc. Finally, this paper proposes a complete data dimensionality reduction solution that can effectively solve the high-dimensional small sample data problem, and code programming for this solution has been implemented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.