Abstract

AbstractNew computing‐in‐memory architecture based on memristors can achieve in situ storage and computing of data, which greatly improves the computing efficiency of the hardware system. Here, a reliable bilayer structured TaOx/Al2O3 memristor with a 2 nm Al2O3 insertion layer is demonstrated. This device exhibits stable and gradual switching behavior with a low set/reset voltage (0.61 V/−0.49 V) and multilevel conductance characteristics. It is further indicated that the device has a larger ON/Off ratio (≈148×) and better nonlinearity of conductance modulation by inserting an Al2O3 layer. Various forms of synaptic plasticity are mimicked, such as long‐term potentiation/depression (LTP/LTD), paired‐pulse facilitation (PPF), and spike‐timing‐dependent plasticity (STDP). Based on the quasi‐linear conductance modulation characteristics, excellent classification accuracy (90.4%) is achieved for the applications of handwritten digit recognition. Moreover, the logic operations (intersection, union, and complement) are implemented on a 3 × 5 memristor array, which shows an efficient way to design versatile and reliable devices and provides a novel idea for neuromorphic computing and in‐memory logic operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.