Abstract

SummaryScheduling and resource allocation in clouds is used to harness the power of the underlying resource pool. Service providers can meet quality of service (QoS) requirements of tenants specified in Service Level Agreements. Improving resource allocation ensures that all tenants will receive fairer access to system resources, which improves overall utilization and throughput. Real‐time applications and services require critical deadlines in order to guarantee QoS. A growing number of data‐intensive applications drive the optimization of scheduling through utilizing data locality in which the scheduler locates a task and ensures the task's relevant data to be on the same server. Choosing suitable scheduling mechanisms for running applications that support multitenancy has consistently been a major challenge. This work proposes a new adaptive Deadline constrained and Data locality aware Dynamic Scheduling Framework “ 3DSF“ that orchestrates different schedulers based on varied requirements. This framework considers tenants' deadline‐based QoS requirements, cloud system's performance and a method of resource allocation to improve resource utilization, system throughput and reduce jobs' completion time. 3DSF contains: (a) a real‐time, preemptive, deadline constrained job scheduler, (b) an optimized data locality aware scheduler, (c) an improved Dominant Resource Fairness greedy resource allocation approach, and (d) an adaptive suite to integrate above‐mentioned schedulers together.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.