Abstract

Nanobodies offer multiple advantages over conventional antibodies in terms of size, stability, solubility, immunogenicity, and production costs, with improved tumor uptake and blood clearance. Additionally, the recombinant expression of nanobodies is robust in various expression systems, such as Escherichia coli, Saccharomyces cerevisiae and Pichia pastoris. P. pastoris is the most widely used microorganism for nanobody production, but all or almost all expression vectors developed for this system are based on the regulated promoter of the alcohol oxidase 1 gene (AOX1) that requires methanol for full induction. In this study, a constitutive anti-CEACAM5 nanobody expression system was constructed under the control of a glyceraldehyde-3-phosphate dehydrogenase promoter (GAP) promoter. The effects of different carbon sources and pH on nanobody expression were evaluated in shaking flask cultures. After 96 h of constitutive expression in shaking flask, a yield of 51.71 mg/L was obtained. In addition, this constitutive expression system produced nanobodies at equivalent yield and affinity to that produced by methanol-induced expression. The results of this study indicated that the use of a constitutive expression system is a promising alternative for the production of nanobodies applied for cancer diagnosis and therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.