Abstract

This research work proposed an automated tumor detection system based on cascaded Convolutional Neural Network (CNN) architecture. In this, each input has convolved separately with three kernels (3 x 3, 5 x 5 and 7 x 7) and their three output feature maps are cascaded to be processed into the hierarchy of two convolution and pooling layers followed by fully connected (FC) layer. In FC layer, the softmax classification technique has performed to find the pixel-wise classification and to detect whether the particular image consisting of tumor or not. This proposed work is tested with BRATS-2018 dataset of both Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG) brain images. Further, this work has evaluated using different metrics namely accuracy, precision, recall, F1-score, specificity and sensitivity. Thus, this method outperforms well with 96% accuracy, 98% precision, 98% F1-score and 99% sensitivity, demonstrating that the tumor identification has achieved 5% better accuracy than the existing tumor detection methods

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.