Abstract
The objective of the work being presented is to propose an approach for obtaining appropriate association rules when the data set is being incrementally updated. During this process raw data is clustered by K-mean Clustering Algorithm and appropriate rules are generated for each cluster. Further, a histogram and probability density function are also generated for each cluster. When Burst data set is coming to the system, initially the histogram and probability density function of this new data set are obtained. The new data set has to be added to the cluster whose histogram and probability density functions are almost similar. The proposed method is evaluated and explained on synthetic data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Information Retrieval Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.