Abstract

The time separation of events (TSE) problem is that of finding the maximum and minimum separation between the times of occurrence of two events in a concurrent system. It has applications in the performance analysis, optimization and verification of concurrent digital systems. This paper introduces an efficient polynomial-time algorithm to give exact bounds on TSE's for choice-free concurrent systems, whose operational semantics obey the max-causality rule. A choice-free concurrent system is modeled as a strongly-connected marked graph, where delays on operations are modeled as bounded intervals with unspecified distributions. While previous approaches handle acyclic systems only, or else require graph unfolding until a steady-state behavior is reached, the proposed approach directly identifies and evaluates the asymptotic steady-state behavior of a cyclic system via a graph-theoretical approach. As a result, the method has significantly lower computational complexity than previously-proposed solutions. A prototype CAD tool has been developed to demonstrate the feasibility and efficacy of our method. A set of experiments have been performed on the tool as well as two existing tools, with noticeable improvement on runtime and accuracy for several examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.