Abstract

Abstract This paper discusses FPGA implementation of Finite Impulse Response (FIR) filters using Distributed Arithmetic (DA) which substitute multiply and accumulate operations with a series of Look-Up-Table (LUT) accesses. Parallel FIR digital filter can be used either for high speed or low-power applications. The distributed arithmetic provides a multiplication-free method for calculating inner products of fixed-point data, based on table lookups of pre calculated partial products. The implementation results are provided to demonstrate a high-speed and low power proposed architecture. The proposed filter is implemented in very high speed integrated circuit hardware description language (VHDL) and verified via simulation. The proposed method offers average reductions of 60% in the number of LUT, 40% reduction in occupied slices and 50% reduction in the number gates for parallel FIR filter implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.