Abstract
Exploiting novel, low cost, and efficient photocatalysts for removal of pollutant waste water was significant to resolve the energy crisis and environment remediation. Here, we report the synthesis of nickel sulphide (NiS)/reduced graphene oxide (rGO)-based heterojunction photocatalyst using one step hydrothermal method. The intimate contact between NiS and rGO was suggested to quicken the transfer of photogenerated electrons from NiS to rGO, reducing the recombination of charge transporters and hence increasing the photocatalytic activities. The physico-chemical properties of the NiS/rGO heterojunction photocatalysts were scientifically studied with different characterization methods. The most efficient photocatalytic performances under solar light irradiation have been carefully assessed, and the NiS/rGO heterojunction nanocomposites exhibit photocatalytic degradation on methylene blue (MB). The removal percentage for MB can reach maximum at ~ 87% in ~ 100 min under solar light treatment. Moreover, the NiS/rGO heterojunction nanocomposite revealed highly stable for removing MB even after four successive experiments. Therefore, the experimental results demonstrated that the prepared NiS/rGO nanocomposites showed significant photocatalytic performance, thus supporting probable active heterojunction nanocomposite for energy conversion as well as in environmental remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.