Abstract

Unknown Unknowns (UUs) are referred to the error predictions that with high confidence. The identifying of the UUs is important to understand the limitation of predictive models. Some proposed solutions are effective in such identifying. All of them assume there is a perfect Oracle to return the correct labels of the UUs. However, it is not practical since there is no perfect Oracle in real world. Even experts will make mistakes in UUs labelling. Such errors will lead to the terrible consequence since fake UUs will mislead the existing algorithms and reduce their performance. In this paper, we identify the impact of noisy Oracle and propose a UUs identifying algorithm that can be adapted to the setting of noisy Oracle. Experimental results demonstrate the effectiveness of our proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.