Abstract

Aiming at the distributed integrated scheduling of complex products with tree structure, a memetic algorithm-based distributed integrated scheduling algorithm is proposed. Based on the framework of the memetic algorithm, the algorithm uses a distributed estimation algorithm for global search and performs a local search strategy based on the critical operation set for the current optimal solution obtained in each evolutionary generation. A bi-chain-based individual representation method is presented and a simple greedy insertion-based decoding method is given; two position-based probability models are built, which are used to describe the distribution of the operation priority and factory assignment, respectively. Based on the designed probability models, two learning-based updating mechanisms and an improved sampling method are given, which ensures that the population evolves towards a promising region. In order to enhance the searchability for the superior solutions, nine disturbance operators based on the critical operation set are presented. The parameters are determined by the design-of-experiment (DOE) test, and the effectiveness of the proposed algorithm is verified by comparative experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.