Abstract

Clustering techniques that group samples based on their attribute similarity have been widely used in many fields such as pattern recognition, feature extraction and malicious behavior characterization. Due to its importance, various clustering techniques have been developed with distributed frameworks such as K-means with Hadoop in Apache Mahout for scalable computation. While K-means requires the number of clusters and self organizing maps (SOM) requires the map size to be given, the technique of GHSOM (growing hierarchical self organizing maps) that clusters samples dynamically to satisfy the requirement on tolerance of variation between samples, poses an attractive unsupervised learning solution for data that have limited information to decide the number of clusters in advance. However it is not scalable with sequential computation, which limits its applications on big data. In this paper, we present a novel distributed algorithm on GHSOM. We take advantage of parallel computation with scala actor models for GHSOM construction, distributing vertical and horizontal expansion tasks to actors and showing significant performance improvement. To evaluate the presented approach, we collect and analyze execution behaviors of thousands of malware in real life and derive detection rules with the presented unsupervised clustering on millions samples, showing its performance improvement, rule effectiveness and potential usage in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.