Abstract
SummaryAn effective mesh generation algorithm is proposed to construct mesh representations for arbitrary fractures in 3D rock masses. With the development of advanced imaging techniques, fractures in a rock mass can be clearly captured by a high‐resolution 3D digital image but with a huge data set. To reduce the data size, corresponding mesh substitutes are required in both visualization and numerical analysis. Fractures in rocks are naturally complicated. They may meet at arbitrary angles at junctions, which could derive topological defects, geometric errors or local connectivity flaws on mesh models. A junction weight is proposed and applied to distinguish fracture junctions from surfaces by an adequate threshold. We take account of fracture junctions and generate an initial surface mesh by a simplified centroidal Voronoi diagram. To further repair the initial mesh, an innovative umbrella operation is designed and adopted to correct mesh topology structures and preserve junction geometry features. Constrained with the aforementioned surface mesh of fracture, a tetrahedral mesh is generated and substituted for the 3D image model to be involved in future numerical analysis. Finally, we take two fractured rock samples as application examples to demonstrate the usefulness and capability of the proposed meshing approach. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.