Abstract

In many ecosystems, foundational species create spatial patterns that structure a broader community. It is unclear, however, how robust these patterns are across large areas and strong environmental gradients, and how the landscape‐level consequences of these patterns may vary. We investigated the robustness of non‐random patterning in the dispersion of the western harvester ant (Pogonomyrmex occidentalis), a widely recognized ecosystem engineer of western North America. We used remote imagery to characterize the spatial structure and densities of western harvester ant mounds at sites spanning their range within the sagebrush steppe and short‐grass prairie areas of Wyoming (581 × 450 km area). We found that ant mound densities varied substantially across the study region, but that mounds were strongly and consistently overdispersed (regularly patterned) across both climatic gradients and mound densities. Precipitation was the only abiotic factor that significantly affected either density or pattern, with stronger patterning among mounds at drier sites. This robustness in ecological patterning is likely to have strong effects on community function; mound dispersion increased the fraction of the landscape within typical ant foraging distances up to 30% over what density alone would predict. We estimated how patterning can modify one key ant effect at a landscape level by combining mound dispersion data with information from a seed removal experiment. Randomization tests based on these results showed that in a representative area, overdispersion could increase the mean landscape‐wide seed removal rate by 16%, and decrease its spatial variance by 50%. Western harvester ants are known to affect multiple aspects of community function and structure at a relatively fine scale, and our results show that their spatial dispersion may therefore influence many features of interspecific interactions and community dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.