Abstract

We prove an average-case depth hierarchy theorem for Boolean circuits over the standard basis of AND, OR, and NOT gates. Our hierarchy theorem says that for every d a#x2265; 2, there is an explicit n-variable Boolean function f, computed by a linear-size depth-d formula, which is such that any depth-(d -- 1) circuit that agrees with f on (1/2 + on(1)) fraction of all inputs must have size exp(na#x03A9;(1/d)). This answers an open question posed by Has tad in his Ph.D. Thesis [Has86b]. Our average-case depth hierarchy theorem implies that the polynomial hierarchy is infinite relative to a random oracle with probability 1, confirming a conjecture of Has tad [Has86a], Cai [Cai86], and Babai [Bab87]. We also use our result to show that there is no approximate converse to the results of Linial, Mansour, Nisan [LMN93] and Boppana [Bop97] on the total influence of constant-depth circuits, thus answering a question posed by Kalai [Kal12] and Hatami [Hat14]. A key ingredient in our proof is a notion of random projections which generalize random restrictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.