Abstract
We present an average case analysis of the minimum spanning tree heuristic for the power assignment problem. The worst‐case approximation ratio of this heuristic is 2. We show that in Euclidean d‐dimensional space, when the vertex set consists of a set of i.i.d. uniform random independent, identically distributed random variables in [0,1]d, and the distance power gradient equals the dimension d, the minimum spanning tree‐based power assignment converges completely to a constant depending only on d.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.