Abstract

We are interested in longitudinal data of a continuous response that show profiles with an initial sharp change and approaching asymptotes for each patient, and many patients drop out with a reason related to the response. In this paper, we focus on a model that assumes a dropout process is missing at random (MAR). In this dropout process, we can obtain consistent maximum likelihood estimators as long as both the mean and covariance structures are correctly specified. However, parsimonious covariance structures for the profiles approaching asymptotes are unclear. An autoregressive linear mixed effects model can express the profile with random individual asymptotes. We show that this model provides a new parsimonious covariance structure. The covariance structure at steady state is compound symmetry and the other elements of the covariance depend on the measurement points. In simulation studies, the estimate of the asymptote is unbiased in MAR dropouts, but biased in non-ignorable dropouts. We also applied this model to actual schizophrenia trial data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.